
Software Requirements Specification (SRS)

Project: Macro Buddy

Team: Macro Buddy 2

Authors: Ryan Allen, Joseph Calles, Likhitha Eda, Tammy Liu, Nicholas Park

Customer: Software Developers

Instructor: Dr. James Daly

TABLE OF CONTENTS

INTRODUCTION ... 1

Purpose .. 1

Scope ...1

Definitions, Acronyms, and Abbreviations ... 2

Organization .. 2

OVERALL DESCRIPTION .. 3

Product Perspective ... 3

Product Functions .. 4

User Characteristics ... 5

Constraints ... 5

Assumptions and Dependencies .. 6

Apportioning of Requirements .. 6

SPECIFIC REQUIREMENTS .. 7

MODELING REQUIREMENTS .. 8

Use Case Diagrams .. 8

Class Diagrams ..12

Sequence Diagram #1 ..16

Sequence Diagram #2 ..17

State Diagram ..18

PROTOTYPE ..19

How to Run Prototype ...22

Sample Scenarios ...23

REFERENCES ..24

POINT OF CONTACT ..25

1

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

1 Introduction

This SRS document is divided into seven subsections. In the first section we will

discuss the purpose of the document, the scope of the product, and the definitions of key

words, acronyms and abbreviations related to the product. In the second section we will talk

about the product perspective which discusses more closely about the context of the product,

the user interface, hardware interface, software interface, communication, operation, and

constraints. Then this section will discuss the major product functions with diagrams to

illustrate these functions. We briefly discuss the user expectations for the product as well as

constraints, assumption, dependencies, and apportioning requirements.

We will also discuss specific requirements and modeling requirements in their

subsections. The third section consists of the list of specific requirements we created for the

product. The fourth section contains modeling requirements. This section contains the use

case diagram, class diagram, and sequence diagrams with explanations. The fifth section will

describe the functionality of the prototype. The sixth section contains references and finally

the seventh section contains the point of contact information.

1.1 Purpose

The purpose of the SRS document is to explain the steps our team took to build the

prototype for the software product. The document contains the overview of the product as well

as the goals, the characteristics, requirements, and prototypes we designed for the product.

This document is designed for students in the Software Engineering 1 course and for software

developers interested in the planning and design of Macro Buddy 2. This document mimics

the steps a software developing group will take to create a software product.

1.2 Scope

MacroBuddy2, is an application that records command line procedures and stores them

to use in the future. Many times, when we want to run the same commands, it takes so much

time and energy. Therefore, the MacroBuddy2 application will make the process of running

the same commands more than once, easier, faster, and with ease to the user. The objective of

MacroBuddy2 is to create a macro which will contain user given commands and automation

script to run these commands.

The MacroBuddy2 will be able to record user given commands and create a script to

store the commands to use to run later. This script will be stored in a location on their device

chosen by the user. The MacroBuddy2 will display up to 50 macros on the user interface with

a scrollable feature. The user will be able to select any macro they created and run it at any

time they wish.

2

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

1.3 Definitions, acronyms, and abbreviations

Macro – A data structure that contains the user’s commands to be executed in

sequence.

Macro Grid – A collection of macros displayed on the user interface organized as a

grid, containing buttons and placeholders for the macros.

Terminal Emulator – The interface that the user will type their commands in, the

user input will be used to create the Macros.

T.E. – Shorthand for Terminal Emulator.

User Interface (UI) – The interface which contains the Terminal Emulator and a

series of buttons which the user can utilize to interact with the Emulator and

their Macros.

MB2 – Shorthand for MacroBuddy2

Location – The file directory the user will save their macros.

Terminal Session – This is the terminal session starts when you open the Macro

Buddy 2 application. This refers to the terminal that opens within the MB2 interface.

1.4 Organization

The rest of this document is organized as follows: Section 2 will contain the product

perspective, product functions, constrains, user expectation, assumption, and dependencies.

Section 3 will contain the software requirements. Section 4 will contain the product diagrams:

use case, class, and sequence diagrams. Section 5 will contain a description of the prototype

functionality. Section 6 contains references. Section 7 has the point of contact.

3

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

2 Overall Description

This section is divided into 6 subsections and we will discuss MacroBuddy2’s context,

structure, software functionalities, and more. In subsection 2.1 will discuss the product’s

system, software, hardware, user, and communication interfaces. Subsection 2.2 will discuss

the main functions of the product. Subsection 2.3 will discuss what types of users we expect to

use the product. Subsection 2.4 will discuss the legal constraints for the product. Subsection

2.5 will talk about what type of software environment will be needed to run the product.

Finally, subsection 2.6 will discuss the requirements of the product that were out of scope for

now and should be addressed in the future.

2.1 Product Perspective

The terminal command line interface has become a symbol of Computer Science, and

even non-tech-savvy people recognize its design but view it with a sense of mystical wonder.

Navigating a terminal and understanding its commands is an essential yet time-consuming

part of software development. Macro Buddy 2 will help software developers save their

terminal scripts and make them more accessible.

MB2 is meant to provide a layer of abstraction for terminal commands but does not

entirely remove the need for a user to work in a terminal. Once macros are generated, the user

can use MB2 as a high-level abstraction layer to easily reproduce the results obtained by

previously written macros with a touch of a button that references macros stored in the file

system.

The goal of MB2 is to quicken the development time of applications by giving

developers a useful tool to handily recall and run terminal commands. It is meant to be a

graphical user interface overlay for a system terminal; any system that uses MB2 should have

such necessary prerequisites as a preinstalled terminal, user I/O capabilities, memory, and file

manipulation.

MB2 works by recording user commands then parsing these commands and storing

them. MB2 will ask the user for the location to save. MB2 can communicate with internal file

systems through paths specified by the program itself so that the user does not need to worry

about locating generated macros, thus acting as a shortcut and connection between the user

and the internal file system of the computer.

4

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

2.2 Product Functions

The primary function of MacroBuddy2 is to record a series of terminal commands

imputed by the user, validate those commands, and then store the macro for later use.

Storing the macros provides the user with the convenience needed to make the

development process more efficient.

The two major functions of MB2 can be summarized in the following two

illustrations which will be broken-down into more detail in section 4.

Function 1

Whereas users would normally spend the time either reentering the same

commands into the terminal over and over, or spent hours developing a batch file, make

file, or other type of command input file, MB2 affords the user the convenience of only

needing to enter the commands one time without having to develop a script.

Function 2

This function streamlines the process of executing scripts. MB2 has a built-in

“Macro grid” that is used to organize the macros in such a way as to make them easy to

find by the user while navigating the MB2’s user interface.

Besides these two functions, the user interface utilizes many helper functions

which make the MB2 more user-friendly the work with. Such functions include

optimized search algorithms, input processors, and code generators.

5

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

2.3 User Characteristics

While MB2 is targeted for use by software developers, anybody with an understanding

of terminal commands can readily use this software. The user is expected to be aware of

command line inputs, file navigation, and simple recording software. The software has

mechanisms in place that try to prevent the misuse of macros, but this will not stop the misuse

of the software within an environment where the user is expected to perform professionally.

For example, MB2 will not prevent the user from running a macro multiple times in-a-row,

even if it would cause problems. For this reason, the user should understand the potential

dangers of using command line macros.

The user should be knowledgeable of command line scripting languages such as bash

or shell script. Although MB2 has functions to correct user errors and functions to generate

script files, they are not replacements for actual knowledge of scripting. Ignorance of this

subject on the user’s part could potentially lead to serious errors. As such, it is the user’s

responsibility to handle the MB2 software in a safe manner.

2.4 Constraints

The constraints for the MB2 are listed below:

▪ The MB2 software is constrained to work only within the environment

provided by the hardware it is installed onto.

▪ MB2 will not attempt to make any external connections via the internet or

other networking medium.

▪ MB2 will not attempt to access folders requiring passwords or admin

privileges unless such is given by the user.

▪ MB2 will have a limited memory usage which it will use from your computer

to store the macros. The MB2 shall not exceed this limit unless the user allows

it.

▪ MB2 will only access folders in the file system within the project itself.

▪ MB2 will be able to run in the background with other apps running at the

same time.

6

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

2.5 Assumptions and Dependencies

We are also assuming the user can download the application and has knowledge of file

directory navigation. The user should be competent regarding terminal commands. Macro

Buddy 2 can be used with MacOS (jar version) or with Windows (exe version) and supports

the machine’s command line functionality, the user is assumed to be using the correct version

for their machine and is also assumed to be only using it to the extent it was designed, for

example MacroBuddy does not function with other terminal emulators or command interfaces

other than the machine’s native default.

The user is required to have the Java Runtime Environment 15.0.1 installed. The

user’s machine is assumed to be operational and in possession of at least 50mb of free

memory to run.

2.6 Apportioning of Requirements

Currently MacroBuddy2_v0.2 (the current build as of writing this) is capable of being

used with MacOS (jar version) and Windows OS (exe version) and each version functions

solely with the operating system’s command line interface. MacroBuddy2 allows the user, via

stripped down built-in terminal emulator, to record and store lists of commands to be executed

in sequence (these are macros), both functioning and non-functioning and it is capable of

loading and then executing those stored commands via quick button press. MacroBuddy2

keeps a running list of all Macros created and stored within MacroBuddy2’s default directory

but also allows the user to manually load a Macro from outside of this directory. The Terminal

Emulator in its current state does not emulate terminal functionality aside from look, feel,

accepting input, and inability to edit prior lines; given much more time something more akin

to a true terminal emulator may have been possible.

7

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

3 Specific Requirements

1) The Macro Buddy should have a Terminal Emulator (T.E.) embedded in it.

1.1) The T.E. should always be active whenever Macro Buddy is on.

1.2) The T.E should recreate the look and feel of a Terminal

1.3) The T.E. should be able to copy the user’s commands and store them

for generating a macro later in the program’s life.

2) The user should be able to record a session from the Terminal Emulator.

2.1) The user should be able to start the session and stop the session on the macro

buddy using the GUI buttons.

2.2) The interface for the macro buddy should mimic the appearance and

functionality of a real terminal.

2.2.1) The user should be able to type and edit commands such as on a real

terminal.

2.2.2) The T.E. should have access to current working directory in order that it

may execute commands.

2.3) Entries will be captured from the terminal and stored in a file which will be later

accessible in the macro grid.

3) The Macro Buddy should be able to generate an Macro from user input.

3.1) After the user stops recording, MB2 should be able to process the input in order to

generate a macro file.

3.2) MB2 should create a macro supported by the user’s OS.

3.3) Once input has been recorded, the macro buddy should be able to successfully

generate a macro file within at most two seconds using a 2.6 GHz processor.

4) A file organization system dubbed as “Macro Grid” will be used to organize the macro

files into an ordered list of macros that will be displayed on the GUI.

4.1) The macro grid should contain all the macros recorded by the user up to at least

fifty individual macros.

4.2) As new macros are recorded, they should be added to placeholder slots on the

Macro Grid GUI layout.

5) MacroBuddy2 should maintain the ability to track its generated Macro files.

5.1) All macros by default, will be stored within the program’s directory.

5.2) The program shall allow the user to load Macros from outside of the default

directory.

5.3) The program’s tracking system shall be consistent and loadable across multiple

sessions.

8

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

4 Modeling Requirements

This section explains the modeling of the code in its concrete form; models are

presented as illustrated diagrams. First, the use case diagram is presented to illustrate a map of

the program and to draw the essential connections between function calls. Each use case is

described in detail below the diagram. Second, the class diagram shows how each element

relates to each other. Each element, along with their attributes and operations, are given a brief

description below the diagram. Third, two sequence diagrams illustrate the flow of functions

in order to conduct a single operation. Fourth, we use a state diagram to show the different

states that the MB2 application can be in.

4.1 Use Case Diagram:

The use case Diagram illustrates how one actor, the user, will be able record

commands, save the generated macro in a location they choose, and select a macro to run.

In the diagram, the main operations of the product are shown as primary use cases and the

rest of the use cases extend these primary use cases.

9

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

Use Case Name: Start Record

Actors: User

Description: The User presses the Record button to start recording input from

terminal.

Type: Primary, Essential

Includes: N/A

Extends: N/A

Cross-refs: Requirement 1, 3.1

Uses cases: None

Use Case Name: Select Macro

Actors: User

Description: The User selects a Macro to execute.

Type: Primary

Includes: N/A

Extends: Load Macro

Cross-refs: Requirement 1

Uses cases: None

Use Case Name: Stop Record

Actors: User

Description: When the user stops recording, input is parsed and saved

Type: Primary

Includes: Parse Input

Extends: N/A

Cross-refs: Requirement 3.1

Uses cases: None

10

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

Use Case Name: Parse Input

Actors: N/A

Description: The Parse Input function happens automatically when recording is
stopped.

Type: Secondary

Includes: Generate Macro

Extends: N/A

Cross-refs: Requirement 3.1

Uses cases: Stop Recording

Use Case Name: Generate Macro

Actors: N/A

Description: Macro is generated after the input is parsed and created
executable.

Type: Secondary

Includes: N/A

Extends: File Directory

Cross-refs: Requirement 5.1

Uses cases: Parse Input

Use Case Name: File Directory

Actors: User

Description: The file directory given by the user is accessed to save macros or
load macros

Type: Secondary

Includes: Parse Input

Extends: Load Macro

Cross-refs: Requirement 6.1

Uses cases: Generate Macro

11

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

Use Case
Name:

Load Macro

Actors: User

Description: The user selected macro will load the file corresponding to it from

the file directory.

Type: Secondary

Includes: N/A

Extends: Generate Macro

Cross-refs:

Uses cases: Select Macro

Use Case Name: Execute Macro

Actors: N/A

Description: The Macro will execute on the terminal after loading.

Type: Secondary

Includes: Terminal

Extends: N/A

Cross-refs:

Uses cases: Load Macro

Use Case Name: Terminal

Actors: User

Description: The user will type commands in the terminal which are to be
recorded. The user can run a macro on the terminal.

Type: Secondary

Includes: N/A

Extends: N/A

Cross-refs:

Uses cases: Execute Macro

12

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

4.2 Class Diagram:

Due to the focus of MacroBuddy2 having one goal, which is to produce a macro

from user input, our class diagram is split into the actions of the user interface. The UI

manages the actions on screen, represented by the MacroBuddy2 Class. The Macro grid,

which is seen in the MB2 class, contains a list of macro buttons, which contain the

methods to manage that referenced macro, whose info is contained in the Macro class.

The other side of the diagram, in the record class, manages the user input. This

class contains all the methods needed to process and generate the macros which will

populate the macro grid.

13

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

Element Name Description

MacroBuddy2 The GUI window which contains a number of Macro

Buttons and possesses buttons for running and recording

macros as well as possessing variables pertaining to the

drawing of itself as a window. This framework creates,

pulls together, and populates macros.

Attributes: + numMacros : int Number of macros

 +macroGrid:macroButton[] Vector of macro buttons. It

contains all the macros the

user created.

 + date : string Date formatted as an ascii

text string is used to create

logs of what operations

occurred at what time

 + button : MacroButton This button represents the

Macro instance. When the

user clicks it, the macro

which is connected to it will

execute

 + width : float Width of the window

 + height : float Height of the window

Operations: loadDirectory() Fetches location of

generated macros

 populateMacros() When the user passes a path

to a directory, this function

will open the directory to

find a file or save a file

 execute() : bool Executes the macro that is

connected to the button

selected by the user

 record() : macro Begins or ends user input

recording

14

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

Element Name Description

MacroButton A Macro Button is a user interfaceable means by which

loading a Macro. Each Macro created and stores appears

as a Button on the UI; clicking on this Button allows the

user to load or delete the Macro. Macros appear with a

name and they appear in order of date created.

Attributes: + name : String The macro’s filename

 + dateCreated : String The system time file

which is used to

populate the macros in

the MacroGrid.

Operations: + loadMacro() : Macro The function populates the

button with the macro file

 + deleteMacro() : bool The function deletes a

macro from the UI and

user’s system.

Element Name Description

Macro The processed series of commands which the user has

previously created. This element is a Macro object and

thus contains all variables related to the definition and

contents of a Macro.

Attributes: + location : String The Macro’s file path

 + name : String The Macro’s display name

(name as appears in UI)

 + filename : String The Macro’s file name

(name for the physical file)

 + exec : String[] Array of Strings containing

file contents

Operations: + runMacro() : void The function for running

the Macro

 + delete() : void The function for deleting

the Macro

 + getExecutable() The function for populating

the Macro’s contents

15

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

Element Name Description

Record The button which controls what the user’s interaction

with the terminal yields, if anything. Also controls the

parsing and storage of the Macros.

Attributes: + isRecording : bool Variable for determining

whether the emulator

should scan user input

 + input : String Variable for storing the last

line user entered

 + exec: file Variable for storing the

executable file that

contains the commands

entered by user.

Operations: + getStatus() : bool This function returns the

TRUE if recording or

FALSE if not recording

 + getInput() : String The function for saving the

last line user entered

 +

storeInput(location:string)

The function for saving the

Macro in a file path

 +

processInput(input:string) :

file

The function for parsing

the user input into Macro

form. Then it will

generate a file composed

of these commands from

the user.
 + generateMacro() :

Macro

This function will

generate a macro object

that will store the

executable file name, its

location, and the macro’s

name.

Element Name Description

fileDir The fetcher for the Macros at the filepath directory

Attributes: + location : string Variable for the filepath

 + executable : string[] The variable for the list of

Macros in the file path

16

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

4.3 Sequence Diagram 1: User Records Input and Generates a Macro

This sequence diagram shows how the MB2 will record user input and generate a

Macro. When the user selects the record button for the first time, MB2 will start recording the

Terminal Emulator (T.E). When the user presses the record button again, the recording will

stop. Between the start and stop of recording is where the user will enter the

input(commands). While recording, MB2 will set isRecording status to True(1). Otherwise, it

will set isRecording status to False(0). After the recording is stopped, MB2 will get the input

using getInput() and the Record class will process the input and generate a file which contains

the commands which can be accessed and executed later on. MB2 will now ask for a location

where the macro can be saved, then saves it there. Then, a macro will be generated. This

macro will contain the information about the file’s location. Finally, the record will send a

success/failure message.

17

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

4.4 Sequence Diagram 2: User selects a Macro to Execute on the Terminal

The second sequence diagram shows the function of how MB2 loads a macro chosen

by the user and executes it. When the user selects a Macro MB2 will run the

execute(macroButton) function. In this function, macroButton will load a macro which will

then fetch for the executable file in a location. Then it will run this file in the runMacro(file)

function. This will print out all the commands onto the Terminal Emulator. After completion,

there will be a success or failure message. This message will depend on return value of the

execute(macroButton) function which is Success or Failure.

18

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

4.5 State Diagram:

This diagram shows the expected states in the MB2 application and the order in which

the MB2 application goes into these states. On the left, a recording sequence is illustrated; on

the right, an execute sequence is illustrated. Many of these states are automated except for

when capturing the user’s input during the “recording” state.

19

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

5 Prototype

UI – The UI of the prototype for Macro Buddy will fully implement all the

necessary controls for a completely functioning product. In order to load already generated

macros, the user will be able to scroll through pages of previously created macros. The

user will be provided with an execute and record button for those functions. All button

interactions are laid out on the right side of the UI, while the terminal window will be

shown on the left half of the screen.

Initial Startup of MB2:

20

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

Recording Commands:

Recording Stopped and Saving Macro:

21

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

Executing the “hello_macro”:

When you want to create a Macro using Macro Buddy, follow this process:

1) Boot up Macro Buddy
2) Press "Start Recording"
3) Type in the Macro Buddy terminal as if you were in command line
4) Press "Stop Recording" when done
5) Save using any name you want; the save file will be located in the directory macro
buddy is located in /macros

When you want to load a Macro you created using Macro Buddy, follow this process:

1) Boot up Macro Buddy
2) Use the list of Macros that you have created to select a macro, use the arrows to navigate
pages
3) Select a Macro
4) Execute the Macro

If you want to load a Macro stored in a non-default directory OR if your macro is
not showing up in the button list, follow this process:

1) Boot up Macro Buddy
2) Use the Load Macro button
3) Execute the Macro

22

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

5.1 How to Run Prototype

Download Instructions: In order to download MacroBuddy, navigate to the website link

below and choose a download based on your preferred OS. To run on MacOS, download the

.jar file, for Windows download MBuddy2_v0.2.exe

Requirements: Java Version 15.0.1

Operating Systems: Works on Windows; tested on Windows 10, assumed to work on

Windows 7/8/8.1. Works and Tested on MacOS Big Sur. Assumed to work on all recent

versions of MacOSX.

Plugins: None

Constraints: None

Link: https://github.com/Allen3Ryan/MacroBuddy

 https:/github.com/Allen3Ryan/MacroBuddy%0c
 https:/github.com/Allen3Ryan/MacroBuddy%0c

23

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

5.2 Sample Scenarios

MB2 is best used when the user is using a set of terminal commands that are often

repeated. For example, a frequent task of most PC users is to delete all files from the trash

bin. Although a simple task through a command line, the user would have to change

directories (cd) to the trash, and then invoke a delete all command from there. With MB2,

the user can write the set of commands only once, and then in the future simply click on a

button that references the set of commands and the system will automatically delete all

files from the trash, thus saving time and potential missteps for the user.

Another potential scenario for use for MB2 is large scale testing. When tests are

run on files in a static location, a macro could be written in order to easily test these files

with a normally tedious set of command line prompts. Because the terminal can run any

set of commands, MB2 would be able to automatically launch a set of tests on a file

location specified by the user in the macro input terminal in the UI.

Another use case for this system is for source control setup for developers. Once

again, because the system can run anything that a terminal can, it can be used with git as

well. Often a developer will want to setup a new repository, but the process can be

lengthy, and mistakes can be made. If a user creates a generated macro for this, all they

must do is press a button in the macro grid and a new repository will be created within

the project folder, which they can then move anywhere they like.

24

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

6 References

[1] https://jstar-c.github.io/MacroBuddy2/

Our Macro Buddy 2 website

[2] https://www.youtube.com/watch?v=5o3fMLPY7qY&t=651s

Java GUI Tutorial in Java Swing. Used to build UI skeleton.

[3] https://stackoverflow.com/

Reference for debugging and syntax correction

[4] https://www.w3schools.com/

Reference for HTML, CSS, and JavaScript used on the website

[5] https://getbootstrap.com/docs/3.4/

Reference for Bootstrap used on the website

[6] https://www.youtube.com/watch?v=5GcQtLDGXy8

Brad Traversy: Bootstrap

[7] https://www.youtube.com/watch?v=UB1O30fR-EE

Brad Traversy: HTML

[8] https://www.youtube.com/watch?v=yfoY53QXEnI

Brad Traversy: CSS

[9] https://github.com/Allen3Ryan/MacroBuddy

 Prototype download

https://jstar-c.github.io/MacroBuddy2/
https://www.youtube.com/watch?v=5o3fMLPY7qY&t=651s
https://stackoverflow.com/
https://www.w3schools.com/
https://getbootstrap.com/docs/3.4/
https://www.youtube.com/watch?v=5GcQtLDGXy8
https://www.youtube.com/watch?v=UB1O30fR-EE
https://www.youtube.com/watch?v=yfoY53QXEnI
https://github.com/Allen3Ryan/MacroBuddy

25

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/18/2020 6:16 PM

7 Point of Contact

For further information regarding this document and project, please contact Prof.

Daly at University of Massachusetts Lowell (james_daly at uml.edu). All materials in this

document have been sanitized for proprietary data. The students and the instructor

gratefully acknowledge the participation of our industrial collaborators.

