
Alex Meier 
Software Engineering II 
Project Proposal 
31 January 2020 

Macro Buddy  
 In software engineering, it is a regular occurrence to have to follow some command line 
procedure to perform builds, move files, copy logs, and other stray tasks that don’t take up 
much time on their own, but after repeating them dozens if not hundreds of times a week can 
be a sizeable time sink.  The obvious solution to this is to try to automate these small tasks 
using scripts or other means.  The problem with this is twofold.  On one hand, writing a script 
can often end up being much more trouble than it’s worth, with the time saved by the 
automation being dwarfed by the hours you spent writing and debugging a shell script instead 
of working on other tasks. Secondly, if you write a lot of these automation scripts, they tend to 
get spread around your file system making you take the extra time to first find the script you 
want to run before you run it. My solution to this problem is Macro Buddy, a GUI driven macro 
and script recorder.   

 
Figure 1:GUI Layout Prototype 

 Macro buddy allows the user to easily and quickly record a terminal session and 
generate a script that repeats the process at the click of a button. First, the user is able to press 
a record button and use the in-app terminal window to type in a sequence of commands.  Once 
the procedure is complete, the user can press “stop”, at which point the application scans 
through the keyboard inputs, and generates a matching script file, and allows you to name the 
procedure.  The app then adds the procedure to a grid of macro buttons, which allow you to 



activate previously recorded scripts with a single click.  The intended use for this feature is for 
the user to leave Macro Buddy running on their desktop, so that they have quick access to their 
automations.  
 The general approach for building this application is to first create a stripped-down 
terminal emulator (simply serving as a front end for the user’s command interpreter of choice). 
Recording the macros will be a matter of writing the input stream into a template file that 
contains some basic setup for whichever scripting language the user requires.  The resulting 
script will be placed in a folder that the user choses.  The working directory of the script will be 
determined based on context when the user initially records the script.  
 Some pitfalls for this project could be dealing with some common terminal features 
such as tab completion and pressing “up arrow” to pull a command from recent history.  These 
actions could introduce unintended characters and other unexpected results.  The solution to 
this problem would be either to write an algorithm to clean up the script, to allow the user to 
edit the script themselves to clean up any issues, or to simply disable these features to prevent 
the user from using them all together.  
 The minimal requirements for this project to be considered a success would be a simple 
interface that allows the user to type in commands, and for the app to be able to generate a 
runnable script to the user’s specification. Some stretch goals for this project could be to allow 
the user to configure what command interpreter the app uses (BASH, C Shell, PowerShell, etc.).  
Additionally, an interface could be created to allow the user to make limited use of variables in 
the scripts, for example if the user wants to copy a set of log files to a zip archive and be able to 
set the name of the archive as part of the automation.  


